Anzu Raptor Drone, RC and App
A quick analysis

Author:
Andreas Makris aka Bin4ry
[am@think-awesome.com]

Co-Authors:
Kevin Finisterre aka dOtslash
Jon Sawyer aka jcase

MADE
TH\S

May 18 2024

Thanks to the two anonymous folks that independently contacted about the whole "white
label" thing

Anzu Robotics (https://www.Anzurobotics.com/) is an US based company that got
some attention in the last weeks by releasing an DJI drone lookalike. The
drone they release is called “Raptor (T)”, it shares the Specs with the DJI
Mavic 3 Enterprise / Mavic 3 Enterprise Thermal. Anzu itself has put an FAQ
on their website explaining that they have licensed the technology from DJI.

A WHAT IS THE ONGOING INVOLVEMENT OF THE LICENSING ORGANIZATION (DJI)?

Licensing technology is a normal business practice. Our agreement in licensing the technology associated with the Raptor-
series drones gave Anzu Robotics the rights to modify and manufacture this technology at will. There are no royalties
shared with the licensing organization, no joint or shared ownership of Anzu Robotics, and no reporting on customer data.
There may be additional products developed through similar agreements, but our work at Anzu Robotics is independent of
any other party aside from the transfer of this technology.

0f course, licensing technology is a standard business practice, but with the
foreshadowing of an ban of DJI products in the United States the big question
is: How much DJI is in the Anzu device, or better said, is the Anzu device
really an own device or just an green painted Mavic 37

Anzu products are produced in Malaysia (maybe the DJI Factory? ;))

A WHERE ARE ANZU ROBOTICS PRODUCTS MANUFACTURED?

Nearly all of the components and final assembly of our drones is done in Malaysia. The completed drone hardware is sent
to Anzu Robotics in the United States and firmware is then installed and quality control measures are conducted.

As the FCC filings (https://fcc.report/company/Anzu-Robotics-L-L-C) have shown
the products are identical on the hardware level to the DJI produts.

The Anzu drones use the DJI proprietary hardware such as the P1 (Pigeon) etc.
Our friends of the FPV wiki have already put the PCBs side by side:
https://fpvwiki.co.uk/dji-white-label-clone-drones

and came to the conclusion that they are identical.

Having in mind that the hardware is the same and that we have to determine if
the Anzu drone is its own device or just a green DJI Mavic 3 Enterprise we
need to take a look at the drone firmware.

Let’'s see what Anzu tells us about the firmware in their FAQ.

https://www.anzurobotics.com/
https://fcc.report/company/Anzu-Robotics-L-L-C
https://fpvwiki.co.uk/dji-white-label-clone-drones

Arr:

A WHERE DOES THE FIRMWARE ON THE RAPTOR-SERIES DRONES COME FROM?

When we finalized the licensing agreement we were provided a version of custom firmware as a snapshot in time. That
firmware was then housed on Aloft's servers for development and can't be accessed or modified by anyone else. The flight
dynamics of our drones were not redeveloped, so you're getting world-class performance benefitting from more than a
decade of aerial robotics R&D. We have taken the necessary measures to ensure that anything on our drones is void of data

security vulnerabilities.

When Anzu writes something like this it implies that there was a custom build
for the hardware done and it does not run any DJI software anymore. Of
course, they do not write that explicit, but calling it an custom firmware
implies that there is something special to the firmware, except the flight
dynamics, which were not redeveloped. As far as I am concerned, I would
expect everything else to be redeveloped when I read this sentence.
Furthermore the firmware is hold at Aloft, not DJI. Great!

Let’s take a look.

What we did is to get the raptor drone and connect it to our computer. The
very first thing we checked is if the drone reacts to normal DJI commands and
can be detected by software designed unique for DJI drones. This software,
the drone-hacks.com software, speaks to the drone via DJI's DUML protocol and
is able to read/flash/dump several information from the drone when connected.

This is what the drone-hacks.com software showed when connecting the Raptor
drone:

Device DY Mo 3 £ = ool

==

N

e AN T 3030 0

The drone-hacks.com software detects the drone as a Mavic 3 Enterprise, which
is interesting. If this is a custom firmware, shouldn’t it be at least
renamed? Well let’s see what the firmware version’s cfg file shows:

dji>
<device id="wm265e'">
<firmware formal=
<release vers

.00.00
.75.02.23"
.01.27"

i
.10 upgrade_order=" _upgrade_center="fals
.02.22.46" "g " ICU" upgrade_order=' s_upgrade_center="false" of ib_t standard_md_L
.00.00.28" group="ac" nar "SPEAKER_MCU" upgrade_order="3" is_upgrade_center="false" op_lib_name="1ibstd
<module id="2607" ''00.00.79.80" type="" group="ac" order: i size='"2435936" name="RTK982" upgrade_order="3" is_upgrade_center="false" op_lib_name="1libstandard_md|
</release>
</firmware:
</device>
/dji>

The cfg file is a signed configuration file of the current drone firmware.

The drone holds a copy of this file on its own filesystem, the file is used
during the flashing process of the firmware to ensure only firmware can be

flashed which is signed cryptographically with the correct key.

The cfg file itself is also signed, so it cannot be altered without being
voided. The cfg file references several modules and holds their checksums.

11" md5_unsign="07a874abe301f5f9fd7ad1969beb5f3c" md5="1df8b50a0de@fdcdcla37e1120a03bcd">wm265e_0802_v20.00.00.07_20231212.pro. fw.sig</module>
|_total="n md5_unsign="232fcc8de2001c0423edabatb6796baf" md5="d70eblfe7b428e492329d848c5a6c648" >wm265e_1502_v20.00.00.04_20231212.pro. fw.sig</module>
" md5_unsign="04c152b91590b37012afalaa81ff4367" md5="961de38a71185b29e925d854751b0036">wm265e_1100_v08.75.02.23_20230731.pro. fw.sig</module>

null" md5_unsign="11a69557532b25a65a7222302a2ada34" md5="436cbf194eff@e243e0b82727e8643bc">wm265e_1200_v01.90.01.27_20221208_mc@1.pro. fw.sig</module>

null" md5_unsign="a0e2f8205a4e0c9d3abb754aclc36f49" md5="bcad2e24f2b9d144f10ff2fb91c6cdc5">wm265e_1202_v01.90.01.27_20221208_mcOl.pro. fw.sig</module>
md5_unsign="31ef8d3c60ef@fa8fb9252b7f672a3d1" md5="fb64a6f837868996579498065d7aa7e" >wm265e_0105_v01.13.10.01_20230511.pro. fw.sig</module>

" md5_unsign="37cb7bce7793220445664645fd21a86a" md5="08e5c3cb71d70e009a072c902f435c29">wm265e_0500_v05.02.22.46_20210825.pro. fw.sig</module>

@l="null" md5_unsign="d35738021208a1a5987a0d4c14e04d72" md5="57bl3ae9a32def57f1dc76180dd0c26e">wm265e_1006_v01.00.00.28_20221123_padl.pro. fw.sig</module>
1" md5_unsign="4bdb604fdb431684378e9d232c150643" md5="0bbech88b4acaaddf7c1b561c40fc49a">wm265e_2607_v00.00.79.80_20221201.pro. fw.sig</module>

During the flashing process the cfg file is parsed and every module is
checked for its checksum, only if the checksum is correct for the module said
module will be processed. Every module itself is then checked for the
signature and only if valid it will be decrypted and flashed.

The keys used for to verify the signature and decrypt the firmware are
handled by the trustzone.

Ultimately if Aloft is in control of the firmware, they should of course use
their own keys and not rely on DJI keys, if they would rely on DJI keys they
would not be in control of the firmware, as they would not be able to encrypt
and sign the images themselves but would have to send them to China for
processing.

For the Mavic 3 Enterprise I happen to be able to decrypt the firmware images
with the correct key, if the Raptor firmware is signed with an own key the
Mavic 3 Enterprise key should not work. Let’s see:

wm265e md5 wm265e_0802_v20.00.00.07_20231212.pro.fw.sig
MD5 (wm265e_0802_v20.00.00.07_20231212.pro.fw.sig) = 1df8b50a@dedf@cdcla37el1120a0@3bcd

(env) wm265e python3 decrypt.py wm265e_0802_v20.00.00.07_20231212.pro.fw.sig
Mavic 3 Enterprise key successful

As you can see the md5 of the 0802 module image is the same as from the cfg
file, therefore we verified that we are handling the correct firmware image
file here. Then the decrypter script found that the Mavic 3 Enterprise key
was successful, it was able to decrypt the file using the Mavic 3 Enterprise
key, interesting...

Let’'s check if the md5 of the decrypted file is the same as the “md5_unsign”

md5 from the cfg file:
(env) wm265e md5 wm265e_0802_v20.00.00.07_20231212.pro.fw.sig.0802.dec

MD5 (wm265e_0802_v20.00.00.07_20231212.pro.fw.sig.0802.dec) = 07a874abe301f5f9fd7ad1969beb5f3c

That looks correct, so I have indeed been able to verify the decryption of
the file.

What does that mean? The firmware was being signed and encrypted using the
very same key as the normal Mavic 3 Enterprise, it is not signed and
encrypted by Aloft or Anzu themselves, but by DJI. The claim that nobody else
can modify the firmware images of the drone is therefore false, not even
Aloft can modify it without voiding it, only DJI can.

Additionally, Anzu claims that the firmware is hold on the Aloft servers and
can’'t be accessed by anyone else.

Let’s check: I was able to check the DJI server for the firmware, same as DJI
Assistant 2 tool one can manually download firmware for updates. Let’'s see if
we download the 0802 firmware from DJI directly, click this link and see what
you get:

https://terra-2-
g.djicdn.com/1546577435024199aad91154298e6ca7/apddnhlhwae2vb6aipfgr2v2q
/wm265e_0802_v20.00.00.07_20231212.pro.fw.sig?auth_key=1716088014—
1716080814670-0-e0c7292992149819493b314134252b1b

Correct: There is our Anzu firmware living on the DJI CDN, so the firmware is
also hosted by DJI in contrary to the claims from Anzu.

Let’s look what is going on in the drone firmware itself.

I will check the 0802 module as an example again, if this is a custom
firmware I would expect Aloft/Anzu software and not DJI software in this
module. As Anzu claimed in the FAQ the software is custom, except the flight
dynamics, so I would expect everything but the flightcontroller (which is not
part of the 0802 module!) to be custom.

https://terra-2-g.djicdn.com/1546577435024199aad91154298e6ca7/apddnhlhwae2v6aipfgr2v2q/wm265e_0802_v20.00.00.07_20231212.pro.fw.sig?auth_key=1716088014-1716080814670-0-e0c729a9921498f9493b314134252b1b
https://terra-2-g.djicdn.com/1546577435024199aad91154298e6ca7/apddnhlhwae2v6aipfgr2v2q/wm265e_0802_v20.00.00.07_20231212.pro.fw.sig?auth_key=1716088014-1716080814670-0-e0c729a9921498f9493b314134252b1b
https://terra-2-g.djicdn.com/1546577435024199aad91154298e6ca7/apddnhlhwae2v6aipfgr2v2q/wm265e_0802_v20.00.00.07_20231212.pro.fw.sig?auth_key=1716088014-1716080814670-0-e0c729a9921498f9493b314134252b1b
https://terra-2-g.djicdn.com/1546577435024199aad91154298e6ca7/apddnhlhwae2v6aipfgr2v2q/wm265e_0802_v20.00.00.07_20231212.pro.fw.sig?auth_key=1716088014-1716080814670-0-e0c729a9921498f9493b314134252b1b

This is part of the system/bin folder:
dji_amt

B dji_blackbox

B dji_camera3

B dji_cht

R dji_config_net_route.
B dji_config_store

B dji_cpu_pll_frequenc
R dji_crashdump.sh

B dji_cst

B dji_dcs

B dji_dsp_load

B dji_fcali_test

B dji_fnm_test

B dji_ftpd

B dji_fulldump

B dji_fw_load

B dji_fw_verify

B dji_gcov

B dji_hms

B dji_kmsg

B dji_lte

B dji_mb_ctrl

R dji_mb_ctrl_safe.sh
B dji_mb_parser

B dji_media_play_servid
B dji_media_player._test
B dji_ml

B dji_ml_gtest

B dji_nn_server

B dji_perception

R dji_perf.sh

B dji_pinmux_check

R dji_ppt

R dji_production_check
B dji_sdrs_agent

B dji_sec

R dji_sn_ops.sh

B dji_sw_uav

B dji_sys

B dji_tombstone.sh

B dji_top

B dji_upgrade

B dji_vtwo_sdk

B dji_wim_slave

R dji_wm265e_ca...ra_a
R dji_wm265e_ca...re_a
B dmesg

Pretty much standard DJI binaries are there, this is the exact layout as the
normal Mavic 3 Enterprise, nothing special here, nothing custom, all normal
DJI start scripts:

ssd_burnin.sh
ssd_disable.sh
ssd_enable.sh

start

start_4G_usb_iperf.sh
start_bt.sh
start_cht_loop_test.bat
start_cst_loop_capture_test
start_cst_loop_test.bat
start_cst_loop_video_test.b:
start_dji_camera.sh
start_dji_system_k2.sh
start_dji_system.sh
start_upgrade_test.sh

start_wifi.sh

And the build.prop file:
U VCIIUUT . JT OUU s CU

begin build properties

autogenerated by vendor_buildinfo.sh
ro.product.board=evb2

ro.board.platform=eagle2
ro.product.vendor.manufacturer=DJI
ro.product.vendor.model=Android NATIVE on Eagle2 WM265E
ro.product.vendor.brand=eagle2
ro.product.vendor.name=eagle2_wm265e
ro.product.vendor.device=eagle2_wm265e

end build properties

#

ADDITIONAL VENDOR BUILD PROPERTIES
#

ro.carrier=unknown

As far as could be seen by a quick check, there is nothing custom in this
drone firmware. The firmware is a plain stock Mavic 3 Enterprise firmware, we
were not able to spot any special Anzu/Aloft software in it. All services
that you would expect from an DJI drone were present, none were removed or
replaced by own services like you would expect from a custom firmware.

The conclusion on the drone firmware: This is a pretty much default Mavic 3
Enterprise drone firmware. Together with the results of the hardware
comparison we can say: One the drone side of things there is no special
Anzu/Aloft version to be seen. Maybe we can spot something else in the
Controller side of things?

The Remote Controller

The RC seems to be a relabeled DJI RC Pro but calling itself RRCOL.
The RC firmware update works the same way as the drone firmware, so let's
investigate the cfg file:

dji>

3" enforce="0" enforce_ext="cn:0" enforce_time="2024-01-08T13:41:11+00:00" from="2024/01/08" expire="2025/01/08">
i " s 0288" name="RC_MCU" upgrade_order=' grade_center="false" op_lib_name=" tandard_md_up
o 6562368" name="PIGEON_GND" upgrade_ordi is_upgrade_center="false" op_lib_name="1ibpigeon_ng
<module id=' " i " size="1508120320" name="sys_app" upgrade_order=" is_upgrade_center="true" op_lib_name="1ibrc8250_md_t

</release>
</firmware>
<addition>

</addition>
</device>

We see another device name here, rm510, which is the device name of the DJI
RC Pro. Firmware version of this cfg is 00.01.0009.

The RRCO1 runs the same system as the RC Pro, but instead of the fly app it
runs the Aloft ai app.

Installed packages on the RC device:
package:com.android.internal.display,.cutout.emulation,co
\pnckago:com.android.1nternal.displa;.cutout.euulntion.do:g;:
packago:com.android.providors.tclophony ‘
package:com,android.providers.media
ackage:com.qti.service.colorservice

ackage:com.android.1nterna1.systeuui.nlvbar.gostural_uldq_b
ackage:com.android.theme.color.cinnamon

ackage:com.android.theme.icon_pack.rounded.systemui
ackage:com.android.documentsui
ackage:com.android.externalstorage
ackage:com.android.htmlviewer

ackage:com.qualcomm.qti.qms.service.connectionsecurity

ackage:com.android.providers.downloads

ackage:com.android.networkstack.inprocess
package:com.android.theme.icon_pack.rounded.android
package:vendor.qti.hardware.cacert.server
package: com.android.theme.icon_pack.circular.thdgepicker
package:com.dpad.update
package:com.android.soundrecorder
package:con.android.providers.downloods.ui
package:ai.aloft.ac_gilot_app

ackage:android.overlay.common
:ackage:cou.nndroig.1n§e;n01édzsgloy.cutout.e-ulation.tall

ackage:com.android.modulemetadata
:ackage:con.android.certinstaller
package:con.android.thene.color.black
package:co-.android.carrierconfig
package:cou.android.thele.color.green
package:co-.android.t:ame.coior.g;::z

kage:com.android.theme.color.
g:zkgge:con.android.1nternal.systenui.navbar.threebutton
package:android 1-
kage: com.qualcomm.wfd.service
g:zkgge:con.gndroid.thene.1con_pack.rounded.launcher
package:cou.android.ntp
- .android.launcher3
g:z:::::zg:.android.1nternalisyst:::1.navbnr-tuobutt°ﬂ
- com.android.statementserv

g:zt:gz:co-.android.hotspotz

package:con.dpad.devicetest

s .overlay.target et
z:z::::::Z:rgzgroid.1nternal.syste:ui.navbar.gestura 4

: : .gcrilmsgtunne
L iy s gfsettings
oragebackup

id.printspooler é“
package'cg::::g:gid.ghene.1con_pack.f111ed.scft£ng

: full
package.cen.d?ld . iy

package:com.dpad. fuld

package:com.android.webview
puckugo:cow.androld.1nputdcv1cos
package:com.dpad.service
‘packcgo:con.android.thont.1con_pnck.c!rculcr.sotting:

package:com.android.musicfx
p.ckngc;con.aooalo.cndroid.wobvicu
ckaao:con.androld.thono.icon.toardrop
ackage:android.ext.shared
nckuge:con.andro!d.koychoin
package: com. android.gallery3d
con.cndroid.thono.1con_p|ck.f1110d.systonui
ackage:android.ext.services
ackogt:con.android.phonc.ovorlay.connon
qti.qtisystemservice
android.cnrrlerconfig.overlny.conmon
android.systomui.ovorloy.comlon
con.android.scrvor.telocom.ovorlay.connon
com.android.packageinstaller
puckcgo:con.lndroid.thomo.font.notoserif:ourco
iplckcgo:con.android.thomc.icon_pock.fillod.lndroid
packago:con.android.themo.1con_pnck.circular.systomui
package:org.mozilla.firefox
packagc:con.lndroid.thomo.icon.squirclo
packago:con.ondroid.storagcmana;er
:com.android.settings
packnge:com.android.theme.icon_pack.fillod.llunchor
packngo:com.nndroid.notworkstnck.ptrnissionconfig
packaao:com.android.thcmo.1con_plck.circullr.lcunchor
packago:com.googlc.android.npps.pdfviowtr
package:con.android.vpndiaiogs
package:com.android.music
package:com.android.phone
package:com.android.shell
packlgo:con.lndroid.theno.icon_pack.fillcd.themepickor
package:con.android.providers.usordictionary
package:com.qualcomm.qti.qmmi
packngc:con.android.intcrnol.systolul.nlvbnr.gostural
package:com.android.location.fused
package:com.android.theme.color.orchid
package:com.android.systemui
package:com.android.theme.color.purple
package:com.qualconn.qti.nctworksetting
package:com.android.permissioncontroller
package:com.qualcomm.qti.qms.service.trustzoneaccess
package:com.dpad.setup
package:com.android.bluetooth
package:com.qualcomm.timeservice
package:com.android.providers.contacts
package:com.android.captiveportallogin
package:com.android.theme.icon.roundedrect
package:com.android.internal.systemui.navbar.gestural_narrow_back
package:com.android.cellbroadcastreceiver.overlay.common
package:com.android.theme.icon_pack.rounded.settings
package:com,google.android.inputmethod.latin
package:com.android.bluetooth.overlay.common
package:cc eI

The App side of things

Let’s take a look at the app, we know by the installed packages list from above that the
package name is ai.Aloft.ac_pilot_app. Grabbing the APK from the RC allows us to inspect
it further, the version we have is 1.12.16.95

First observation is that the app uses the DJI SDK, the SDK itself is protected by
secheo/bangcle, which is obfuscating and encrypting the original DEX files, so reverse
engineering them is hard. Luckily this is not a dealbreaker for us. Due to my good friend Jon
the secneo protection is easily removed.

— — 1 — -

sdk_versions
ac.zip

ldm_keys
sdkclasses.bangcle

loadT awm

The look into the SDK reveals that this seems to be pretty much a standard SDK from DJl in
some older version. We cannot observe any special/custom magic. All functions like DJI
cloudcontrol are still in the SDK. If this is an “secure” product, like Anzu claims, it should
not use an SDK that has these functions included. Here is the DJI cloudcontrol in the SDK:

private String b(b bvar) {
Set<String> set;
JSONObject jSONObject = new JSONObject();
try {
jSONObject.put("app_name", bVar.a());
jSONObject.put("env", bVar.d());
set = this.b;
} catch (JSONException e) {
e.printStackTrace();
}
if (set != null & set.size() > 0) {
JSONArray jSONArray = new JSONArray();
Iterator<String> it = this.b.iterator();
while (it.hasNext()) {
jSONArray.put(it.next());
¥
jSONObject.put("namespaces", jSONArray);
if (!l.a(this.c)) {
jSONObject.put(*"user_id", this.c);
¥
jSONObject.put("device_uuid", bVar.c());
jSONObject.put("country"”, bvar.b());
jSONObject.put("platform”, bvar.e());
jSONObject.put(“platform_version", bVar.f());
jSONObject.put("app_version", bVar.i());
if (!l.a(this.a)) {
jSONObject.put("extra", this.a);
}
return jSONObject.toString();
}
throw new IllegalArgumentException("namespaces is required");

}

public h a(b bvar) {
this.d = "https://api.djiservice.org/api/cloudcontrol/config";
return new h(this.d, c(bvar), b(bvar));

A little bit of going backwards in the code we find this part of the code to determine if
cloudcontrolis used or not:

@Ooverride // dji.v5.inner.register.co_a
public boolean fco_a() {

return SDKRelativeINI.native_isSDKActivated() || LDMManager.getInstance().isLDMEnabled();
T

If LocalDataMode (LDM) is enabled the cloudcontrol service will not run.

Aloft enables LDM with an valid LDMkey:

public final String |readLicensecontents() {
try {
InputStreamReader inputStreamReader = new InputStreamReader(this.context.getAssets().open("1ldm_keys/" + this.keyLocation));
String str = (String) CollectionsKt.firstOrNull((List) TextStreamsKt.readLines(inputStreamReader));
if (str == null) {
str = "

inputStreamReader.close();
return str;
} catch (Exception e) {
Log.d(TAG, "readLicenseContents: Failed to read license contents: " + e.getlLocalizedMessage());
return "";

What does that mean? Currently LDM is enabled, but LDM defaults to disabled
in the SDK, so if anything unintended happens, LDM will not be enabled and
the data will be synced to DJI.

LDM does not disable the internet connection, if any data leaks are stopped
by LDM is to be proven separately, in the past LDM still leaked some data
depending on the SDK version used. Same goes for the case when DJI decides to
void the LDMkey.

It would be much better if Aloft would not rely on the DJI SDK for the app in
the first place, as the SDK includes the cloudcontrol function. So instead of
disabling it by using LDM it should not be included at all.

Overall, Aloft app is an Pilot app that simply uses the SDK provided by DJI,
like any other popular apps for DJI products. It just has some extra
functions like warranty activation etc. The Aloft app is not an own rewrite
of the DJI fly app, it does not control the hardware on a low level but only
speaks to the DJI provided SDK which then sends control commands to the drone
via DJI's DUML format.

For claiming security, the app is very sloppy with security itself. By the
time looking at the app the staging and production AWS was found in the code.

AWS in the code:
public final class FlavorConfig implements IFlavorConfig {
public static final int $stable = 0;
public static final FlavorConfig INSTANCE = new FlavorConfig();
private static final boolean unauthenticatedModeEnabled = true;
private static final String stagingUpgradeS3Location = "aloft-stagingl-pilot-app.s3.us-east-2.amazonaws.com";
private static final String productionUpgradeS3Location = "aloft-prodl-pilot-app.s3.amazonaws.com";

Both, staging and prod, AWS S3 can be accessed/downloaded without
authentication:

'$ aws s3 1s aloft-prodl-pilot-app

2024-03-05
2024-05-08
2024-03-29
2024-04-04
2024-04-08
2023-10-31
2023-11-09
2023-11-09
2023-11-09
2023-11-13
2023-11-09
2023-11-13
2023-11-13
2023-11-30
2024-01-16
2024-01-16
2024-02-02
2024-02-06
2024-02-12
2024-02-14
2024-02-15
2024-02-21
2024-01-16
2024-01-16
2024-01-19
2024-01-19
2024-01-22
2024-01-24
2024-01-26
2024-01-31
2024-02-26

PRE

PRE
168922016
140458216
168442570
168446609
168450705
171976533
159603450
159623070
159468602
159515162
159517374
1595259160
159526026
160788408
161360027
161522118
165520076
165541639
165526895
165533963
165537751
165565337
161598050
164008498
164063212
165501808
165501242
165473883
165470968
165520399
168955352

dji_rc_pro/

raptor_rc_pro/

vl.
vl.
vi.
vl.
vl.
vl.
vl.
vl.
vi.
vl.
vl.
vl.
vl.
vl.
vi.
vl.
vl.
vl.
vi.
vl.
vi.
vl.
vl.
vl.
vl.
vl.
vi.
vl.
vl.
vi.
vl.

10.3.apk
12.16.95.apk
12.3.58.apk
12.5.65.apk
12.6.70.apk
7.1.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk
.apk

VVvVoeEeNOOSTTLUNPMP

7.
7
7
7
r
7
7.
r
8.
8.
8.
8.
8.
8.
8.
8.
8
8
8
8
8
8
8.
8.
9.

VvV oeEeNO>OTHrFW

v [Aloft_AWS_staging_dump
v @ dji_rc_pro
B RRCO01_v00.01....0_20240110.zip
B RRCO01_v00.01...11_20240110.zip
v @ raptor_rc_pro

B RRCO01_v00.01....9_20240108.zip
B RRCO01_v00.01....0_20240110.zip
B RRCO01_v00.01....1_20240123.zip

B v1.6.0.apk

B Vv1.7.0.apk

B v1.7.3-constraints.apk

B v1.7.3.apk

B v1.7.4.apk

B Vv1.7.5.apk

B v1.7.6.apk

B v1.7.7.apk

B v1.7.8.apk

B v1.7.9.apk

B v1.7.10.apk

B v1.7.11.apk

B v1.8.0.apk

B v1.8.2.apk

B v1.8.3.apk

B v1.8.4.apk

B v1.8.5.apk

B v1.8.6.apk

B Vv1.8.7.apk

B v1.8.8.apk

B v1.8.9.apk

B v1.8.10.apk

B v1.8.11.apk

B v1.8.12.apk

B v1.8.13.apk

B v1.8.14.apk

B v1.8.16.apk

B v1.9.0.apk

B v1.9.1.apk

B v1.9.3.apk

B v1.10.3.21.apk

B v1.11.1.25.apk

B v1.12.0.48.apk

B v1.12.1.55.apk

B v1.12.3.57.apk

B v1.12.4.61.apk

B v1.12.5.64.apk

B v1.12.6.69.apk

B Vv1.12.7.71.apk

B v1.12.8.72.apk

When claiming to be certified:

A HOW IS MY DATA STORED WHEN CAPTURED WITH THE RAPTOR-SERIES DRONES?

During image or video capture, files are stored on the drone’s onboard SD card. Upon landing, you can easily remove the SD
card and transfer content to other devices for viewing and editing. Flight logs, accessible via drone connectivity, serve for
warranty claims and other analyses initiated through standard service processes, such as an RMA or service request.

All servers used by Anzu Robotics are through our strategic software partner Aloft and are US-based. Your data remains
secure, as we do not transmit any information to third parties unless explicitly transferred by the drone owner.

Aloft is ISO 27001 and SOC 2, Type Il certified.

This should not happen..

Please look at:
https://www.anzurobotics.com/data-security/

More precise:
https://www.anzurobotics.com/wp—content/uploads/2024/04/Anzu—Robotics—-Cyber—
Disclosure-2024.pdf

This are very strong claims, especially "Aloft holds ISO 27001 and SOC 2 TYPE
IT certifications, demonstrating their commitment to information security and
adherence to rigorous security practices."

Leaving an AWS open without noticing that several researchers already dumped

the contents of both staging and production does not build trust.

(Sidenote, they have an security paper, go for it for a fun read:
https://www.aloft.ai/wp—content/uploads/2021/05/Aloft-Netsec-White-Paper—
Final-05.17.21.pdf)

Interesting fact: The AWS share included an DJI RC Pro folder, with the same
firmware version as the RRCO1 (Raptor Remote Controller 01) firmware, the
RRCO1 firmware is just copy & paste of the rm510 (DJI RC Pro) firmware with
the swapped app ..

Let’s wrap up ..

Anyway, Anzu tried to position itself as a drone company using licensed
technology by DJI, in an “secured” way.

The analysis of the drone which we were able to access shows that these
claims are far exaggerated, the drone is just a green painted Mavic 3
Enterprise, and the RC comes with another app bundled that is nothing but a
flying app using the DJI SDK with some custom configuration. We were not able
to find any proof of “custom” drone firmware, the only custom part was the
app, but the app still heavily relies on DJI technology, most likely any
other DJI flying app can be used if run on the controller.

Conclusion: The Anzu Raptor is, just a green DJI Mavic 3 Enterprise, without
any substantial own development. The RRCO1 is just an RC Pro painted green
with a swapped app, which is just another UI for the DJI SDK. Overall, we
feel the meme on the cover page describes the situation best.

https://www.anzurobotics.com/data-security/
https://www.anzurobotics.com/wp-content/uploads/2024/04/Anzu-Robotics-Cyber-Disclosure-2024.pdf
https://www.anzurobotics.com/wp-content/uploads/2024/04/Anzu-Robotics-Cyber-Disclosure-2024.pdf
https://www.aloft.ai/wp-content/uploads/2021/05/Aloft-Netsec-White-Paper-Final-05.17.21.pdf
https://www.aloft.ai/wp-content/uploads/2021/05/Aloft-Netsec-White-Paper-Final-05.17.21.pdf

